BIRZEIT UNIVERSITY

Faculty of Engineering and Technology Electrical and Computer Engineering Department

Summer Semester 2020/2021
Time: 16:15-17:15 (75 minutes)
Digital Systems (ENCS2340)
Second...Exam
Date: $22 / 08 / 2022$

Instructors:

\square Dr. Aziz Mohammad Qaroush	- section 1	\square Dr. Ayman Hroub	- section 3
\square Dr. Ayman Hroub	- section 2	\square Dr. Bilal Karaki	- section 4

Student Name: azan AbyAlowh. Student ID-: 1210145

Question \#	Full Mark	Student's Mark
Q1	$\mathbf{1 0}$	0
Q2	7	6.5
Q3	8	7.5
TOTAL	25	24

Question 1: (60 points, 3 points each). Select the correct answer

1	2	3	4	5	6	7	8	9	10
G	X	B	B	A	C	S	$V C$	A	θ

1- We can construct a 5 -to-32-line decoder using:
A- Five 2-to-4-line decoders with enable.
(B. Two 4-to-16-line decoders without enable and NOT-gate. X

C- Four 3-to-8-line decoders with enable and a 2 -to-4-line decoder.
D- Nine 2-to-4-line decoders with enable.

2- Consider a J-K flip-flop. Let the present state $Q=0, J=1$, and $K=1$, what will be the next state Q after one clock?
A. Open circuit (High Impedance)
B. $\mathrm{Q}=2$
C. $\mathrm{Q}=0$
(D. $\mathrm{Q}=1$
E. None of the above.

3 - A digital circuit has two inputs $\mathrm{X} \& \mathrm{Y}$ each has a 2-bit unsigned number. Its output Z is the multiplication of the given inputs $\mathrm{Z}=\mathrm{X} * \mathrm{Y}$. The minimum number of bits required for the $*$ output number Z is

A- 3
(B. 4
C- 5
D- 6

4- The following circuit is an implementation for
A. $F(A, B, C)=\sum m(0,1,3,4)$
(B. $F(A, B, C)=\sum m(1,5,7)$
C. $F(A, B, C)=\sum m(0,1,5,7)$
D. $F(A, B, C)=\sum m(0,2,3,4,7)$
E. None

5- The following circuit is an implementation of:
(A)- One bit comparator.

B- R-S Latch.
C- D-Flip-Flop.
D- D-Latch.
E- Non of the above.

6- What is the Boolean function $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ that is implemented with a 4×1 multiplexer as shown below.

A- $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,5,6)$
B- $F(x, y, z)=\sum(2,3,4,7)$
(a) $-\frac{\left.F(x, y, z)=\sum(2,3,5,6)\right)}{F(x, y, z)=\sum(0,1,4,7)}$

None of the above

7- The implementation of a full adder can be implemented using two half adders and
A- Priority encoder
B- NAND gate
(C) OR gate

D- NOR gate
E- AND gate

8- To construct a T-flip-flop using D-flip-flop as shown below, we need to use

A- Not gate.
B- AND gate.
(C.) XOR gate.

D- XNOR gate.
E- OR gate.

9- In the priority encoder shown with D_{0} having highest priority and D_{7} the lowest priority, if the status at inputs $D_{3}=1$ and $D_{7}=1$ and all other inputs are set to zero then the output of the encoder is
A. $Y_{2}=1, Y_{1}=1$, and $Y_{0}=0$.
B. $Y_{2}=1, Y_{1}=1$, and $Y_{0}=1$.
C. $\mathrm{Y}_{2}=0, \mathrm{Y}_{1}=0$, and $\mathrm{Y}_{0}=1$.
(D. $\mathrm{Y}_{2}=0, \mathrm{Y}_{1}=1$, and $\mathrm{Y}_{0}=1$.
E. None

10- Consider the following Verilog module: I
module sec 1234(A,B,C);
input A, B;
output C;
wire not, not, wi, wa;
not G1(notA, A);
not $\mathrm{G} 2(\operatorname{notB}, \mathrm{~B})$;

and $\mathrm{G} 3(\mathrm{w} 1, \mathrm{~A}$, not);
and $G 4(w 2, B, n o t A)$;
or G5(C, wi, w2);
endmodule
This module can be used as an alternative to:
A. Decoder
B. MUX
C. XNOR gate
D. XOR gate
E. None of the above

Q2) Implement the Boolean function $F(\Lambda, B, C)=\sum$ in $(0,2,3,5)$
a) using one 8.1 multiplexer

b) using one 4×1 multiplexer ?

Q 3) Design a combinational logic circuit that receives a 3-bit unsigned number X and produces the floor of $\frac{X}{2}$, ie. $Z=\left\lfloor\frac{X}{2}\right\rfloor$. (e.g. if $X=5$ then $Z=\left\lfloor\frac{5}{2}\right\rfloor=\lfloor 2.5\rfloor=2$).

$R_{1}=X_{2}$
se MSB

LL SB

